11 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+\left(0.04 F_{o}^{2}\right)^{2}\right]$
$(\Delta / \sigma)_{\text {max }}=0.017$
$\Delta \rho_{\max }=3.75 \mathrm{e} \AA_{\circ}^{-3}$
$\Delta \rho_{\text {min }}=-4.15 \mathrm{e} \AA^{-3}$

Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Positional parameters, site occupancies and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$				
	Occupancy	x	y	z	
Cs 1	1.00	0	0	0	$U_{\text {eq }}$
Ag 1	$0.320(8)$	0	$1 / 2$	$1 / 4$	$0.0176(4)$
Mnl	$0.590(5)$	0	$1 / 2$	$1 / 4$	$0.0151(4)$
Te 1	1.00	0	0	$0.35612(4)$	$0.0151(4)$
		0	$0.0154(4)$		

Table 2. Selected bond distances (\AA) and angles $\left(^{\circ}\right.$)

$$
(M=A g, M n)
$$

Cs1-Te1 ${ }^{1} \quad 3.892(2) \quad M-T e 1^{11} \quad 2.794(1)$
Tel ${ }^{\text {ii }}-M-$ Tel $l^{\text {ii }} \quad 110.23(2) \quad$ Tel $^{1 i}-M-\mathrm{Tel}^{\text {iv }} \quad 107.96$ (4)
Symmetry codes: (i) $x-\frac{1}{2}, y-\frac{1}{2}, z-\frac{1}{2}$; (ii) $-\frac{1}{2}-x, \frac{1}{2}-y, \frac{1}{2}-z$; (iii) $x, 1+y, z$; (iv) $\frac{1}{2}-x, \frac{1}{2}-y, \frac{1}{2}-z$.
Initial cell parameters and symmetry information for CsAg $0_{0.64} \mathrm{Mn}_{1.18} \mathrm{Te}_{2}$ were obtained from precession photographs taken at room temperature. Intensity data were processed (Waters \& Ibers, 1977) and corrected for absorption (de Meulenaer \& Tompa, 1965) on an IBM RS/6000 series computer. The initial $\mathrm{Cs}, \mathrm{Ag}, \mathrm{Mn}$, and Te positional parameters were obtained from the structure of the isostructural compound $\mathrm{CsLiMnS}_{2}$ (Schmitz \& Bronger, 1987). The structure was refined with the program SHELXL93 (Sheldrick, 1993). The Ag^{+} and Mn^{2+} cations are disordered unequally over one site. The stoichiometry of these metals was determined by constraining the total charge of the $\mathrm{Ag} / \mathrm{Mn}$ site to be +3 (to maintain charge balance) while refining the occupancies of the Ag^{+}and Mn^{2+} cations. The refinement included anisotropic displacement parameters and an extinction parameter. The anisotropic displacement parameters of the Ag^{+}and Mn^{2+} cations were constrained to be equal. The final difference electron density map shows no feature with a height greater than 1.3% that of a Cs atom.

CsAg ${ }_{0.64} \mathrm{Mn}_{1.18} \mathrm{Te}_{2}$ exhibits the $\mathrm{ThCr}_{2} \mathrm{Si}_{2}$ structure type (Klepp \& Boller, 1978) and comprises layers of edge-sharing M-centered tetrahedra ($M=\mathrm{Ag} / \mathrm{Mn}$) separated by Cs^{+}cations.

Data collection: local program. Cell refinement: local program. Data reduction: local program. Molecular graphics: SHELXTLJPC (Sheldrick, 1994). Software used to prepare material for publication: SHELXTLIPC.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: BR1142). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Klepp, K. \& Boller, H. (1978). Monatsh. Chem. 109, 1049-1078.
Meulenaer, J. de \& Tompa, H. (1965). Acta Cryst. 19, 1014-1018.
Schmitz, D. \& Bronger, W. (1987). Z. Anorg. Allg. Chem. 553, 248260.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Sheldrick, G. M. (1994). SHELXTLPC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Waters, J. M. \& Ibers, J. A. (1977). Inorg. Chem. 16, 3273-3277.

Acta Cryst. (1996). C52, 2385-2387

A New Europium Borosilicate, $\mathbf{E u}_{3} \mathbf{B S i}_{2} \mathbf{O}_{\mathbf{1 0}}$

Lisheng Ch, Huayang Chen, Shulquan Deng, Honghu Zhuang and Jinshun Huang*
State Key Laboratory of Structural Chemistry, Fujian
Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fujian, Fuzhou 350002, People's
Republic of China

(Received 13 February 1996; accepted 18 April 1996)

Abstract

A single crystal of a new europium borosilicate, boron trieuropium disilicon decaoxide, was obtained by hightemperature solid-state reaction and chemical vapour transport methods. The structure is composed of layers of isolated BSilO_{6}^{5-} and $\mathrm{Si}_{2} \mathrm{O}_{4}^{4-}$ anions which alternate along the c axis. The layers are linked through three crystallographically independent Eu^{3+} ions to form a three-dimensional network structure.

Comment

Studies of rare earth borosilicates in the last ten years have shown these compounds to be promising phosphor and laser materials. The compounds LnBMO_{5} ($M=\mathrm{Si}, \mathrm{Ge}$) with the stillwellite structure contain a distorted chain of tetrahedral BO_{4} groups (Voronkov \& Pyatenko, 1967; Ruimont \& Tarte, 1988; Jsaryuk et al., 1991); Eu^{3+} in these compounds shows relatively high luminescent efficiency (Antic-Fidancev, 1994). $\mathrm{Nd}_{3} \mathrm{BGe}_{1.08} \mathrm{Si}_{0.92} \mathrm{O}_{10}$ contains the planar BO_{3} group (Serhan et al., 1994) and the Ge and Si atoms are distributed statistically over the tetrahedral sites. The strong $\mathrm{B}-\mathrm{O}$ bond in this compound influences the crystal field around the rare earth sites, which may be helpful in raising the fluorescence lifetime of the ${ }^{4} F_{3 / 2}$ emitting state of Nd^{3+}. We have recently investigated the system $\mathrm{Ln}_{2} \mathrm{O}_{3}-\mathrm{B}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$, and we report here the synthesis and crystal structure of $\mathrm{Eu}_{3} \mathrm{BSi}_{2} \mathrm{O}_{10}$.

Fig. 1 shows the unit cell of $\mathrm{Eu}_{3} \mathrm{BSi}_{2} \mathrm{O}_{10}$. It is apparent from this view that the structure consists of isolated BSilO_{6}^{5-} and $\mathrm{Si}_{2} \mathrm{O}_{4}^{4-}$ anion layers alternating along the c axis. The BSilO_{6}^{5-} anions consist of a BO_{3} triangle and an SilO_{4}^{4-} tetrahedron linked by corner
sharing through an $\mathrm{O} 4 c$ atom. The $\mathrm{B}-\mathrm{O}$ bond lengths range from 1.34 (1) to $1.43(1) \AA$, with a mean value of $1.38 \AA$; the bond angles range from $114(1)$ to $127(1)^{\circ}$. The SilO_{4}^{4-} and $\mathrm{Si}_{2} \mathrm{O}_{4}^{4-}$ tetrahedra are very regular (Liebau, 1985), with Sil-O distances from 1.60 (1) to 1.648 (9) \AA (mean value $1.627 \AA$) and $\mathrm{Si} 2-\mathrm{O}$ distances from 1.612 (9) to 1.649 (8) \AA (mean value $1.629 \AA$), the bond angles ranging from $101.6(5)$ to $115.1(5)^{\circ}$ for $\mathrm{O}-\mathrm{Sil}-\mathrm{O}$ and from $101.6(5)$ to $119.9(5)^{\circ}$ for $\mathrm{O}-$ Si2-O.

Fig. 1. The arrangement of the BSilO_{6}^{-}and $\mathrm{Si}_{2} \mathrm{O}_{4}^{4-}$ anion layers along c. Displacement ellipsoids are plotted at the 50% probability level.

Three crystallographically independent rare earth ions, $\mathrm{Eu} 1^{3+}, \mathrm{Eu}^{3+}$ and $\mathrm{Eu} 3^{3+}$, are located at interlayer sites and connect the BSilO_{6}^{5-} and $\mathrm{Si}_{2} \mathrm{O}_{4}^{4-}$ anion layers. Eu^{3+} and $\mathrm{Eu} 2^{3+}$ are coordinated by nine O atoms in tricapped trigonal prismatic geometry, the bond distances varying from 2.298 (8) to 2.69 (1) \AA (mean value $2.531 \AA$) for Eu1 ${ }^{3+}$ and from $2.292(9)$ to $2.94(1) \AA$ (mean value $2.505 \AA$) for $E u 2^{3+}$. Eu 3^{3+} is surrounded by eight O atoms in a dodecahedral geometry, the bond distances varying from 2.301 (9) to 2.583 (9) \AA (mean value $2.428 \AA$). The coordination polyhedra of Eul ${ }^{3+}$, $\mathrm{Eu} 2^{3+}$ and $\mathrm{Eu} 3^{3+}$ share edges with each other to form a three-dimensional network structure (Fig. 2).

Fig. 2. A representation of the connection of the Eu-O polyhedra in half the unit cell. Displacement ellipsoids are plotted at the 50\% probability level.

Experimental

The single crystal was obtained by solid-state reaction and chemical vapour transport methods. The starting materials, $\mathrm{Eu}_{2} \mathrm{O}_{3}(>99.9 \%), \mathrm{B}_{2} \mathrm{O}_{3}(>99.999 \%)$ and $\mathrm{SiO}_{2}(\mathrm{AR})$, were mixed in the ratio $3: 1: 4$, sealed in an evacuated quartz tube and heated at 1073 K for 10 h , then at 1273 K for 10 d . After cooling at a rate of $2 \mathrm{~K} \mathrm{~h}^{-1}$ to 1073 K , cooling was continued to room temperature in air. Colourless needle-shaped single crystals were obtained.

Crystal data

$\mathrm{Eu}_{3} \mathrm{BSi}_{2} \mathrm{O}_{10}$
$M_{r}=682.86$
Orthorhombic
Pbca
$a=9.673(1) \AA$
$b=6.992$ (3) \AA
$c=22.867$ (3) \AA
$V=1546.6(8) \AA^{3}$
$Z=8$
$D_{x}=5.87 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=14-17^{\circ}$
$\mu=24.44 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Needle
$0.40 \times 0.05 \times 0.01 \mathrm{~mm}$
Colourless

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scans (North, Phillips \& Mathews, 1968)
$T_{\text {min }}=0.358, \quad T_{\text {max }}=$ 0.997

5373 measured reflections
5373 independent reflections

Refinement

Refinement on F
$R=0.0527$
$w R=0.0608$
$S=0.61$
3286 reflections
146 parameters

$$
\begin{aligned}
w= & 1 /\left[\sigma(F)^{2}+(0.020 F)^{2}\right. \\
& +1.0]
\end{aligned}
$$

3286 observed reflections

$$
\begin{aligned}
& \quad[I>3.0 \sigma(I)] \\
& \theta_{\max }=40.0^{\circ} \\
& h=0 \rightarrow 17 \\
& k=0 \rightarrow 12 \\
& l=-41 \rightarrow 0
\end{aligned}
$$

3 standard reflections frequency: 166 min intensity decay: none
$(\Delta / \sigma)_{\max }=0.0004$
$\Delta \rho_{\max }=6.94 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-1.56 \mathrm{e}^{-3}$

Extinction correction: none
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$U_{\text {eq }}$
Eul	0.13469 (6)	0.17862 (8)	0.33592 (2)	0.00635 (8)
Eu2	0.73177 (5)	-0.09239 (8)	0.31809 (2)	0.00595 (8)
Eu 3	0.49044 (5)	0.13630 (8)	0.42790 (2)	0.00501 (7)
Sil	-0.1225 (3)	0.1423 (4)	0.4222 (1)	0.0052 (5)
Si2	0.4394 (3)	0.1863 (5)	0.2789 (1)	0.0057 (5)
B	0.244 (1)	0.339 (2)	0.4699 (5)	0.007 (2)
01	0.4023 (8)	0.133 (1)	0.2105 (3)	0.006 (1)
O2	-0.2742 (9)	0.147 (2)	0.3903 (4)	0.012 (2)
O3	0.1076 (9)	0.206 (1)	0.2221 (4)	0.009 (1)
04	0.3640 (9)	0.337 (2)	0.5063 (4)	0.012 (2)
O5	0.1259 (9)	0.419 (1)	0.4912 (4)	0.010 (1)
O6	-0.0473 (9)	0.326 (1)	0.3930 (4)	0.009 (1)
07	0.3444 (9)	0.375 (1)	0.2894 (4)	0.010 (1)

O8	$0.390(1)$	$0.037(1)$	$0.3283(3)$	$0.010(1)$
O9	$0.2603(9)$	$0.255(1)$	$0.4180(4)$	$0.011(1)$
O10	$-0.037(1)$	$-0.040(1)$	$0.4001(4)$	$0.016(2)$

Table 2. Selected geometric parameters (\AA)

Eul-OI'	2.507 (8)	Eu3-O4	2.583 (9)
Eul-O3	2.622 (9)	Eu3-O5 ${ }^{\text {vii }}$	2.301 (9)
Eul-O6	2.423 (9)	Eu3-O5 ${ }^{\text {a }}$	2.379 (9)
Eul-O7	2.670 (9)	Eu3-O6"	2.375 (9)
Eul-O7 ${ }^{\text {² }}$	2.384 (9)	Eu3-O8	2.572 (8)
Eul-O8	2.667 (9)	Eu3-O9	2.385 (9)
Eul-O8 ${ }^{\text {in }}$	2.521 (9)	Eu3-O10 ${ }^{\text {ii1 }}$	2.39 (1)
Eul-O9	2.298 (8)	$\mathrm{Sil}-\mathrm{O} 2$	1.639 (9)
Eu1-O10	2.69 (1)	$\mathrm{Sil}-\mathrm{O}^{\text {vui }}$	1.648 (9)
$\mathrm{Eu} 2-\mathrm{Ol}{ }^{\text {iv }}$	2.409 (8)	Sil-O6	1.620 (9)
$\mathrm{Eu} 2-\mathrm{Ol}{ }^{2}$	2.372 (8)	Sil-O10	1.60 (1)
$\mathrm{Eu} 2-\mathrm{O} 2^{\text {+i }}$	2.35 (1)	$\mathrm{Si} 2-\mathrm{O} 1$	1.649 (8)
$\mathrm{Eu} 2-\mathrm{O} 2^{\text {ii }}$	2.49 (1)	$\mathrm{Si} 2-\mathrm{O3}^{*}$	1.633 (9)
$\mathrm{Eu} 2-\mathrm{O} 3^{\text {iv }}$	2.292 (9)	$\mathrm{Si} 2-07$	1.62 (1)
$\mathrm{Eu} 2-\mathrm{O} 3^{\text {v }}$	2.575 (9)	Si2-08	1.612 (9)
Eu2-O6"	2.539 (8)	B-O4	1.43 (1)
Eu2-O7"	2.576 (9)	B-O5	1.36 (1)
$\mathrm{Eu} 2-\mathrm{O} 10^{\text {v1 }}$	2.94 (1)	$\mathrm{B}-\mathrm{O} 9$	1.34 (1)
Eu3-O22 ${ }^{\text {vi }}$	2.435 (9)		

Symmetry codes: (i) $x-\frac{1}{2}, y, \frac{1}{2}-z$; (ii) $\frac{1}{2}-x, y-\frac{1}{2}, z$; (iii) $\frac{1}{2}-$ $x, \frac{1}{2}+y, z$; (iv) $1-x, y-\frac{1}{2}, \frac{1}{2}-z ;$ (v) $\frac{1}{2}+x, y, \frac{1}{2}-z$; (vi) $1+x, y, z$; (vii) $\frac{1}{2}+x, \frac{1}{2}-y, 1-z ;(\text { viii })^{2} x-\frac{1}{2}, \frac{1}{2}-y, 1-z$.

The five highest peaks in the residual electron density are all less that $0.75 \AA$ from a rare earth ion.

Data collection: CAD-4 software (Enraf-Nonius, 1977). Cell refinement: CAD-4 software. Data reduction: MolEN (Lorentzpolarization) (Fair, 1990). Program(s) used to solve structure: MolEN (Patterson). Program(s) used to refine structure: MolEN LSFM. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: GCIF, local program.

The work was supported by the National Natural Science Foundation of China.

[^0]
References

Antic-Fidancev, E. (1994). J. Phys. Condens. Matter, 6, 6857-6864. Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Jsaryuk, V. I., Dzhurinskii, B. F., Zolin, V. F., Lysanova, G. V., Komova, M. G. \& Savchenko, V. D. (1991). Izv. Akad. Nauk. SSSR Neorg. Mater. 27, 68. (In Russian.)
Liebau, F. (1985). Structural Chemistry of Silicates, Structure, Bonding and Classification. Berlin/New York: Springer-Verlag.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Ruimont, A. \& Tarte, P. (1988). J. Solid State Chem. 75, 244-250.
Serhan, K., Taibi, M., Aride, J., Boukhari, A., Darriet, J. \& Le Flem, G. (1994). J. Solid State Chem. 110, 384-388.

Voronkov, A. A. \& Pyatenko, Y. A. (1967). Sov. Phys. Crystallogr. 12, 214-221.

Acta Cryst. (1996). C52, 2387-2389

$\mathbf{K G a A s}_{\mathbf{2}} \mathbf{O}_{\mathbf{7}}$

Kuan-Jiuh Lin and Kwang-Hwa Lii
Institute of Chemistry, Academia Sinica, Taipei, Taiwan. E-mail: kjlin@chem.sinica.edu.tw

(Received 20 September 1995; accepted 19 April 1996)

Abstract

Potassium gallium diarsenate($4-$), $\mathrm{KGaAs}_{2} \mathrm{O}_{7}$, has been synthesized from a flux and structurally characterized by single-crystal X-ray diffraction. It is isostructural with $\mathrm{KAlAs}_{2} \mathrm{O}_{7}$ [Boughzala \& Jouini (1995). Acta Cryst. C51, 179-181] and $\mathrm{RbAlAs}_{2} \mathrm{O}_{7}$ [Boughzala, Driss \& Jouini (1993). Acta Cryst. C49, 425-427].

Comment

Aluminophosphates have been extensively studied because they are known to be useful materials for catalysis and adsorption (Wilson, Lok, Messing, Cannan \& Flanigen, 1982). The replacement of aluminium by gallium has yielded both novel structure types and phases that are analogous to known aluminophosphates and aluminosilicates. In contrast, few galloarsenates have been reported. There are only two structurally characterized galloarsenates in the literature, namely, GaAsO_{4} (Goiffon, Jumas, Maurin \& Philippot, 1986) and $\mathrm{Ga}_{6}\left(\mathrm{AsO}_{4}\right)_{6}\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}\right)_{4}(\mathrm{HF})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$ (Chen, Li, Yang \& $\mathrm{Xu}, 1989$). In this paper, we describe the synthesis and crystal structure of a potassium gallium arsenate, $\mathrm{KGaAs}_{2} \mathrm{O}_{7}$.

The structure contains intersecting tunnels with the K^{+}cations located at the tunnel intersections. A polyhedral view of the structure along the c axis is shown in Fig. 1. The shortest $\mathrm{O} \cdots \mathrm{O}$ distance across the window of the tunnel along the c axis is $5.3 \AA$, which is only slightly larger than the corresponding distance in $\mathrm{KAlAs}_{2} \mathrm{O}_{7}$ (Boughzala \& Jouini, 1995). The framework is composed of GaO_{6} octahedra joined through $\mathrm{As}_{2} \mathrm{O}_{7}$ diarsenate groups by corner sharing. The atom labeling of the asymmetric unit is shown in Fig. 2.

All of the GaO_{6} octahedra are regular $[\mathrm{Ga}-\mathrm{O}$ $1.936(4)-2.002(4) \AA, \quad \mathrm{O}-\mathrm{Ga}-\mathrm{O} 87.4(1)-93.0(2)^{\circ} \mathrm{J}$. The AsO_{4} tetrahedra of the $\mathrm{As}_{2} \mathrm{O}_{7}$ group are in a staggered configuration. The mean bridging and terminal As- O bond lengths are 1.760 (4) and 1.664 (4) \AA, respectively, and the As-O-As angle is 119.1 (2) ${ }^{\circ}$. These values are comparable with 1.764 (4), $1.660 \AA$ and $118.3(2)^{\circ}$ for $\mathrm{KAlAs}_{2} \mathrm{O}_{7}$.
The two crystallographically distinct K1 and K2 cations in $\mathrm{KGaAs}_{2} \mathrm{O}_{7}$ lie on inversion centers. The coordination numbers of the K^{+}ions were determined on

[^0]: Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: DU1155). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

